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Quantum states without time-reversal symmetry: wavefront 
dislocations in a non-integrable Aharonov-Bohm billiard 

M V Berry and M Robnik 
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 ITL, U K  

Received 23 August 1985 

Abstract. We display complex wavefunctions (G; for the j th  eigenstate of a particle moving 
freely in a domain Ec (whose reflecting boundary gives classically chaotic motion) threaded 
by a single line of magnetic flux whose strength (in quantum units) is a. The wavefronts 
(phase contours of ICJ) show the expected dislocation singularities both away from the flux 
line (where their strength is *l)  and at the flux line (where the strength is the integer 
closest to a). $s shows two dislocations away from the flux line for all a, and the birth 
of a dislocation at the flux line as a passes the value 4. &, shows 43 dislocations, in 
reasonable agreement with a semiclassical theory based on regarding IL, as a complex 
Gaussian random function, which predicts X dislocations in the asymptotic limit N +  Co. 

1. Introduction 

We aim to demonstrate by examples that the complex bound-state wavefunctions for 
Hamiltonians 5 without time-reversal symmetry do in fact possess the phase singu- 
larities that genericity arguments lead us to expect. If the wavefunction tb is written 
in terms of modulus p and phase ,y, namely 

then the singularities of ,y occur at the zeros of p ,  which generically have codimension 
two. In the plane the singularities are points; in space they are lines. Nye and Berry 
(1974) called them wavefront dislocations because of the morphological resemblance 
between the constant-,y surfaces (wavefronts) and atomic planes near crystal disloca- 
tions. 

In previous studies (reviewed by Berry 1981), ranging over oceanography, acoustics 
and optics as well as quantum mechanics, attention was focused on scattering problems 
(time-dependent as well as stationary). When the geometry of bound states has been 
considered this has usually been for time-reversible whose wavefunctions are real 
so that the nodal sets have codimension one-that is, lines in the plane and surfaces 
in space (see McDonald and Kaufman (1979), Robnik (1984), Berry and Wilkinson 
(1984) and the discussion in Berry (1983)). 

It might be objected that in quantum mechanics it is unrealistic to study phase 
geometry because ~ ( r )  can be altered by a gauge transformation: replacing the momen- 
tum p by p - V F (  r ) ,  where F is any single-valued function, causes ,y to change to 
,y + F /  h without affecting the physical content of the wavefunction. But although such 
a transformation moves the wavefronts it leaves invariant the dislocations which are 
precisely the singularities we will study. 
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x(  r )  is a single-valued function of position under continuation not involving circuits 
enclosing dislocations, but changes by  ST, where S is an integer, around a circuit 
which does enclose a dislocation. S is the strength of the dislocation; generically, 
S = * l .  

We will study point dislocations in the bound states of a charged particle moving 
freely in a planar (billiard) domain 9, on whose reflecting walls $(r)  must vanish, 
threaded by a single line of magnetic flux which in quantum units has strength a (that 
is, a = charge x fluxlh). This is the 'Aharonov-Bohm quantum billiard' introduced 
by Berry and Robnik (1986, hereafter referred to as BR);  we showed that in position 
representation with r = (x, y )  = ( r ,  e )  and the origin at the flux line, the Hamiltonian is 

(2) 

where A is any vector potential describing the localised magnetic field. Thus A must 
satisfy 

A = -[V - iaA( r)]' 

V,A(r) = 27rTr8(r) (3) 

for any positive circuit enclosing the flux line once. 

the symmetries 
With (2) the wavefunctions $, and energy levels E, defined by fi$, = E,$, possess 

E,(-d = E,(a) 

E , (a+l )=  E,(a) $,(r; a + ~ ) = e " + , ( r ;  a). 

$Jr; - a )  = $p; a )  
( 4) 

Therefore all essential structure, including the generic phase singularities in +,, is 
contained in the flux range 0 6 a s 4, and most of our study will be restricted to this 
range. 

But the physical singularity at r = 0 can produce a phase singularity there which 
is not the same inside and outside the range 0 S a 6 f. Indeed from (4) it follows that 
changing a by an integer N gives a phase factor exp(iN8) and so changes the strength 
So of the dislocation at r = O  by N. However, So is always an integer and so must 
change discontinuously as a varies smoothly. The jumps in So occur as a passes 
halfinteger values. This can also be seen from (4) which implies 

$ , ( r ; ~ + & ) = e ' e $ l * ( r ; t - & ) .  ( 5 )  

This phenomenon also occurs in the Aharonov-Bohm scattering wavefunction, where 
it was studied analytically and experimentally by Berry er a1 (1980); they showed that 
So is simply the integer closest to a and that its jump is associated with a nodal line 
connecting the flux line with infinity. In the present context we expect for half-integer 
a a nodal line connecting the flux line with the boundary of 9. This is associated 
with the special form of $: 

where f is a real function (see BR) which under continuation around the origin changes 
sign across the nodal line. 

In § 2 we study the wavefunction geometry for a low state ($,) as a function of a, 
including the transition through a = 4  where the first dislocation appears at the flux 
line. In § 3 we study a high state ($,J for a particular value of a and interpret the 
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distribution of dislocations in terms of a theory in which CC, is regarded as a Gaussian 
random function of position. 

All computations will be for the domain 9 whose boundary is given parametrically 
by 

x = cos I$ + B cos 24 + C cos(34 + p )  

y = sin 4 + B sin 2 4  + C sin(34 + p )  
(7) 

with B = C = 0.2, p = ~ / 3 .  This is the ‘Africa’ shape shown in all our figures. It was 
chosen for three reasons. First, 9 is a cubic conformal image of the unit disc, for 
which our method of solving Schrodinger’s equation (fully explained in BR) can be 
applied. Second, 9 has no geometric symmetry and so the genericity of $ is not 
threatened by the antiunitary invariance phenomena discussed by Robnik and Berry 
(1986). Third, the boundary of 9 gives rise to classical (bouncing) motion that is 
certainly non-integrable and indeed completely irregular (according to all our computa- 
tional evidence) and so the wavefunctions (especially the high-lying ones) ought to 
display the effects of what has come to be called ‘quantum chaos’. 

2. Geometry of a low-lying state for different flux values 

Without flux (a = 0), t,hj are the real eigenfunctions of the Laplace operator satisfying 
Dirichlet boundary conditions on the boundary (7) .  Figure 1 shows the nodal lines 
and contours of the modulus pj( r )  for j = 5 .  There are three nodal cells bounded by 
nodal lines that meet the boundary perpendicularly, as they must. 

Figure 1. Nodal lines (left) and contours of modulus (right) for the real wavefunction 
$ 5 ( r )  in the billiard ( 7 )  without flux. 

Figure 2 shows G5 for six non-zero values of a. For each a we display the wavefronts 
(contours of x at intervals of ~ / 4 ) ,  the nodal lines of Re $ = p cos x, and the contours 
of the modulus p. (Strictly the nodal pictures are redundant because the information 
they contain is present in the wavefront pictures (the zero set of Re $ is the 
union of the wavefronts x = 7r/2 and ,y = 3 ~ / 2 ) ,  but we include them for clarity of 
presentation.) 



1368 M V Berry and M Robnik 



Wavefront dislocations in an Aharonov- Bohm quantum billiard 1369 

The most striking features are the two dislocation points, which spring into being 
as soon as the flux is switched on; their positions hardly change over the whole range 
0 < a < 0.5. Both dislocations have the same sign: S = +1 (for positive circuits). For 
small flux (e.g. (Y = 0.1) the wavefronts are crowded near the nodes of the real wavefunc- 
tion for zero flux (figure 1). 

As a approaches 0.5 (e.g. a = 0.49) wavefronts crowd near the origin, anticipating 
the dislocation that will form there. When a = 0.5 there is the expected nodal line, 
clearly visible on the modulus picture, connecting the flux line to the boundary. When 
(Y just exceeds 0.5 (e.g. a = 0.51) the dislocation has evidently been formed (with 
So = +1) but wavefronts approach it very anisotropically; note that the topology of 
connection of wavefronts with the other two dislocation points has altered. With 
further increase of a (e.g. to the golden flux a = f(6- 1) = 0.618), wavefronts distribute 
themselves more uniformly around this dislocation which now closely resembles the 
other two; nothing betrays the fact that this one, unlike those, owes its existence to 
the physical singularity at the flux line. Comparing the golden flux with the ‘dual 
golden’ flux a = 1 -;(A- 1) = 0.382 we see that the modulus pictures are identical, 
as ( 5 )  implies, but the wavefronts (and thus the nodal lines) are not the same, 
because ( 5 )  implies 

,y( r ;  f+ E )  = -x( r ;  f - E )  + 8. (8) 
One obvious feature of figure 2 is the fact that all wavefronts meet the boundary 

perpendicularly. This is an artefact of our choice of gauge (see BR), in which the lines 
of A near the boundary are parallel to it ( A  is the velocity field of a steady irrotational 
incompressible flow in 9, with a point vortex of strength 2.rr at the origin). With this 
gauge it follows from the Schrodinger equation that V2$ = 0 on the boundary so that 
the zero set of any ‘projection’ Re iJ, exp( -i,yo) (i.e. the wavefront with phase ,y = ,yo) 

must meet the boundary perpendicularly. With a different choice of gauge the wave- 
fronts could be made to meet the boundary at any angle. (Another trivial consequence 
of gauge freedom is that multiplication by a constant phase factor exp(iX0) leaves the 
pattern of wavefronts unchanged but adds ,yo to the value of the phase at each point; 
therefore it would be meaningless to label the phase contours in our pictures, and we 
have not done so.) 

3. The geometry of a high-lying state and its semiclassical interpretation 

Figure 3 shows the 50th state for the golden flux a =;(A- 1). The most obvious 
feature of the wavefronts is the proliferation of dislocations, more or less uniformly 

- 
Figure 3. As figure 2 for and a = t ( J 5  - 1) 
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distributed across 9 except for a tendency to avoid the boundary: there are 44 of 
them. The nodal lines of Re wander without apparent regularity, and have more 
or less uniform spacing except near avoided crossings (the same morphology was noted 
by McDonald and Kaufman (1979) in the real wavefunctions of a chaotic billiard 
without flux). The contours of pso show a series of maxima, more or less uniformly 
distributed and with a tendency to be higher in the bottom right part of 9 (‘south east 
Africa’). is not a low-lying state and so it is natural to seek to understand it in 
terms of the limited semiclassical theory which is available for such classically non- 
integrable systems. 

This theory (Berry 1977, Voros 1979) (reviewed by Berry 1983) is based on the 
idea that $ ( r )  near r is a superposition of waves with wavevectors k, related to the 
momenta p of classical motion near r by de Broglie’s relation k = p /  h (in this paper 
we take h = 1-cf (2)). For a classically ergodic system, such as we assume the Africa 
billiard to be on the basis of numerical computations of the bounce map, these momenta 
are uniformly distributed over the energy surface H ( r ,  p )  = E. For the Hamiltonian 
( 2 )  and energy E = k2  this gives wavevectors 

kl(  r )  = kul + aA(  r )  (9) 

where ut are unit vectors uniformly distributed in direction. This corresponds to the 
fact that in an ergodic billiard (with or without flux) particles eventually pass almost 
every point with constant speed but with almost every direction of velocity, and velocity 
is p - aA(  r ) .  

In the superposition, the different wavevectors kl contribute to $ ( r )  with the same 
strength but with phases a1 that can be assumed random (because of the long times 
separating returns to the neighbourhood of r ) .  The model wavefunctions describing 
quantum states with energies near E are thus members of a Gaussian random ensemble 
with wavevectors (9). The functions in this ensemble can be written 

where B is the area of 9, included to ensure that the $G are normalised on the average, 
and the first exponential factor contains the effects of the vector potential with a 
replaced by its nearest integer So( a )  in order to keep CLG single-valued, and I,,, + m. 
Of course these functions do not satisfy the condition of vanishing on the billiard 
boundary. 

First we discuss the effects of the flux factor. If a is of the order of unity (e.g. the 
golden flux), its effects are semiclassically negligible ( k  is large) except for a small 
region near the flux line whose linear dimensions are comparable with the flux-free 
wavelength 2 r / k  (this is the region within which SO(a) IA( r ) l>  kr ) .  For very large a 
the phase i,bG is dominated by the first factor in (10) which simply describes the 
dislocation at r = 0, already discussed in 0 1. 

Figure 4 shows a function (LG chosen from the ensemble (10) with So = 0 and k 
chosen to correspond semiclassically with the energy E50, i.e. k = (47r x 50/~&‘)’’~, where 
d is the area of 9. Qualitatively there is a close resemblance with figure 3, apart from 
the following three differences. First, there is no tendency for dislocations of (CIG to 
avoid the boundary as those of the exact waves $G do. This tendency is of course 
gauge-independent but in the gauge we are using it arises from the fact that all 
wavefronts must meet the boundary perpendicularly and so are less likely to intersect 
close to it. Second, and with the same explanation, there is no tendency for the nodal 
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Figure4. As figure 3 for a simulated wavefunction of the type (10) with k 2  chosen to 
approximate ESo, I,,, = 10 and 8, chosen randomly in the range 0 s  6 , s  271. 

lines of Re \cIG to meet the boundary perpendicularly as those of \FIG do. Third, there 
is no tendency for the heights of the maxima of GG to be greater near ‘south east 
Africa’, as those of \c15,, are; we have no explanation for this (it might be a fluctuation, 
or it might indicate some hidden regularity in the classical motion). 

A quantitative prediction of the Gaussian random model (10) is that the expected 
number of dislocations in the wavefunction I,!JUv as N +  a3 (i.e. semiclassically) is simply 
A” itself. To derive this result we write (10) as 

(LG( r )  3 U( r )  + i u (  r )  (11) 

and neglect the flux factor which is semiclassically unimportant except when very close 
to the origin. Dislocations are joint zeros of U and U, so that the number in any area 
Y is 

The expectation value of the dislocation density is therefore 

where ( } denotes averaging over the ensemble (10) with random phases 6,. 

Gauss-distributed variables with variances 
It follows from (10) that, at any point, U, U, & / a x . .  . d u / d y  are independent 

( u 2 ) = ( v 2 ) =  1 / 2 d  

((E) 2, = . . * ( (z) * ) = $ k 2  .54. 

In an obvious notation the average (13) is thus 

The quadruple integral may be evaluated by introducing polar coordinates in the uxuy 
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and u,uy planes, with the result 

n = k2/4.rr. (16) 

When applied to the whole domain 9 this predicts dk2/4 .rr  dislocations, which is 
simply the leading (Weyl) term in the asymptotic expansion for the number of levels 
below k, i.e. X. Therefore we have obtained the result we claimed: the Xth state has, 
on the average, X dislocations. This conclusion survives a rough attempt to include 
the tendency of dislocations to avoid the boundary: if we apply (16 )  not to the whole 
of 9 but to a domain excluding a narrow strip of width k-' (i.e. wavelength/2~) 
round the boundary, which has length 3, the expected number of dislocations becomes 

( d - 3 / k ) k 2 / 4 ~ =  s P k 2 / 4 ~ - 2 ' k / 4 ~  (17)  

which is precisely the corrected Weyl formula for X. 
The number of dislocations in $N is not expected to be exactly X but to fluctuate 

from state to state. It seems difficult to estimate the magnitude of these fluctuations, 
but assuming they are, at least approximately, Poissonian, i.e. v", we see that the 
presence of 43 dislocations (excluding r = 0) in accords reasonably well with the 
theory. We have also computed $lo and $zo for the golden a, and found 8 and 16 
dislocations respectively, thus lending further credibility to the theoretical predictions. 
(Inspection of our pictures suggests that the boundary avoidance zone is somewhat 
wider than the 11 k we have assumed, and more like a quarter of a wavelength; if this 
is assumed, the predicted dislocation number becomes X -  0.588dX which for X = 50, 
20 and 10 gives 46, 17 and 8 dislocations-much closer to the observed numbers.) 
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